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 

Abstract—This study presents a preliminary investigation into 

the automatic assessment of Language Impaired Children’s 

(LIC) prosodic skills in one grammatical aspect: sentence 

modalities. Three types of language impairments were studied: 

Autism Disorder (AD), Pervasive Developmental Disorder-Not 

Otherwise Specified (PDD-NOS) and Specific Language 

Impairment (SLI). A control group of Typically Developing 

(TD) children that was both age and gender matched with LIC 

was used for the analysis. All of the children were asked to 

imitate sentences that provided different types of intonation 

(e.g., descending and rising contours). An automatic system 

was then used to assess LIC’s prosodic skills by comparing the 

intonation recognition scores with those obtained by the 

control group. The results showed that all LIC have difficulties 

in reproducing intonation contours because they achieved 

significantly lower recognition scores than TD children on 

almost all studied intonations (p<0.05). Regarding the “Rising” 

intonation, only SLI children had high recognition scores 

similar to TD children, which suggests a more pronounced 

pragmatic impairment in AD and PDD-NOS children. The 

automatic approach used in this study to assess LIC’s prosodic 

skills confirms the clinical descriptions of the subjects’ 

communication impairments.  

 

Index Terms—Automatic intonation recognition, Prosodic 

skills assessment, Social communication impairments  
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I. INTRODUCTION 

PEECH is a complex waveform that conveys a lot of useful 

information for interpersonal communication and human-

machine interaction. Indeed, a speaker not only produces a raw 

message composed of textual information when he or she 

speaks but also transmits a wide set of information that 

modulates and enhances the meaning of the produced message 

[1]. This additional information is conveyed in speech by 

prosody and can be directly (e.g., through sentence modality or 

word focus) or indirectly (e.g., idiosyncrasy) linked to the 

message. To properly communicate, knowledge of the pre-

established codes that are being used is also required. Indeed, 

the richness of social interactions shared by two speakers 

through speech strongly depends on their ability to use a full 

range of pre-established codes. These codes link acoustic 

speech realization and both linguistic- and social-related 

meanings. The acquisition and correct use of such codes in 

speech thus play an essential role in the inter-subjective 

development and social interaction abilities of children. This 

crucial step of speech acquisition relies on cognition and is 

supposed to be functional in the early stages of a child‟s life 

[2].  

A. Prosody 

Prosody is defined as the supra-segmental properties of the 

speech signal that modulate and enhance its meaning. It aims 

to construct discourse through expressive language at several 

communication levels, i.e., grammatical, pragmatic and 

affective prosody [3]. Grammatical prosody is used to signal 

syntactic information within sentences [4]. Stress is used to 

signal, for example, whether a token is being used as a noun 

(convict) or a verb (convict). Pitch contours signal the ends of 

utterances and denote whether they are, for example, questions 

(rising pitch) or statements (falling pitch). Pragmatic prosody 

conveys the speaker‟s intentions or the hierarchy of 

information within the utterance [3] and results in optional 

changes in the way an utterance is expressed [5]. Thus, it 

carries social information beyond that conveyed by the syntax 

of the sentence. Affective prosody serves a more global 

function than those served by the prior two forms. It conveys a 

speaker‟s general state of feeling [6] and includes associated 

changes in register when talking to different listeners (e.g., 
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peers, young children or people of higher social status) [3].  

Because prosodic deficits contribute to language, 

communication and social interaction disorders and lead to 

social isolation, the atypical prosody in individuals with 

communication disorders became a research topic. It appears 

that prosodic awareness underpins language skills, and a 

deficiency in prosody may affect both language development 

and social interaction. 

B. Prosodic Disorders in Language Impaired Children 

Most children presenting speech impairments have limited 

social interactions, which contributes to social isolation. A 

developmental language disorder may be secondary to hearing 

loss or acquired brain injury and may occur without specific 

cause [7]. In this case, international classifications distinguish 

Specific Language Impairment (SLI), on one hand, and 

language impairment symptomatic of a developmental disorder 

(e.g., Pervasive Developmental Disorders - PDD) on the other. 

The former can affect both expressive and receptive language 

and is defined as a “pure” language impairment [8]. The latter, 

PDD, is characterized by severe deficits and pervasive 

impairment in several areas of development such as reciprocal 

social interactions, communication skills and stereotyped 

behaviors, interests and activities [9]. Three main disorders 

have been described [7]: i) Autistic Disorder (AD), which 

manifests as early onset language impairment quite similar to 

that of SLI [10] and symptoms in all areas that characterize 

PDD; ii) Asperger‟s Syndrome, which does not evince 

language delay; and iii) Pervasive Developmental Disorder-

Not Otherwise Specified (PDD-NOS), which is characterized 

by social, communicative and/or stereotypic impairments that 

are less severe than in AD and appear later in life. 

Language Impaired Children (LIC) may also show prosodic 

disorders: AD children often sound differently than their peers, 

which adds a barrier to social integration [11]. Furthermore, 

the prosodic communication barrier is often persistent while 

other language skills improve [12]. Such disorders notably 

affect acoustic features such as pitch, loudness, voice quality 

and speech timing (i.e., rhythm).  

The characteristics of the described LIC prosodic disorders 

are various and seem to be connected with the type of 

language impairment. 

 

Specific Language Impairment  

Intonation has been studied very little in children with SLI 

[13]. Some researchers hypothesized that intonation provides 

reliable cues to grammatical structure by referring to the 

theory of phonological bootstrapping [14], which claims that 

prosodic processing of spoken language allows children to 

identify and then acquire grammatical structures as inputs. 

Consequently, difficulties in the processing of prosodic feature 

such as intonation and rhythm may generate language 

difficulties [15]. While some studies concluded that SLI 

patients do not have significant intonation deficits and that 

intonation is independent of both morphosyntactic and 

segmental phonological impairments [16]-[18], some others 

have shown small but significant deficits [13], [19], [20]. With 

regards to intonation contours production, Wells and Peppé 

[13] found that SLI children produced less congruent contours 

than typically developing children. The authors hypothesized 

that SLI children understand the pragmatic context but fail to 

select the corresponding contour. On the topic of intonation 

imitation tasks, the results seem contradictory. Van der 

Meulen et al. [21] and Wells and Peppé [13] found that SLI 

children were less able to imitate prosodic features. Several 

interpretations were proposed: (i) the weakness was due to the 

task itself rather than to a true prosodic impairment [21]; (ii) a 

failure in working memory was more involved than prosodic 

skills [21]; and iii) deficits in intonation production at the 

phonetic level were sufficient to explain the failure to imitate 

prosodic features [13]. Conversely, Snow [17] reported that 

children with SLI showed a typical use of falling tones and 

Marshall et al. [18] did not find any difference in the ability to 

imitate intonation contours between SLI and typically 

developing children.  

 

Pervasive Developmental Disorders  

Abnormal prosody was identified as a core feature of 

individuals with autism [22]. The observed prosodic 

differences include monotonic or machine-like intonation, 

aberrant stress patterns, deficits in pitch and intensity control 

and a “concerned” voice quality. These inappropriate patterns 

related to communication/sociability ratings tend to persist 

over time even while other language skills improve [23]. Many 

studies have tried to define the prosodic features in Autism 

Spectrum Disorder (ASD) patients (for a review see [13]). 

With regards to intonation contours production and intonation 

contours imitation tasks, the results are contradictory. In a 

reading-aloud task, Fosnot and Jun [24] found that AD 

children did not distinguish questions and statements; all 

utterances sounded like statements. In an imitation condition 

task, AD children performed better. The authors concluded 

that AD subjects can produce intonation contours although 

they do not use them or understand their communicative value. 

They also observed a correlation between intonation imitation 

skills and autism severity, which suggests that the ability to 

reproduce intonation contours could be an index of autism 

severity. Paul et al. [3] found no difference between AD and 

TD children in the use of intonation to distinguish questions 

and statements. Peppé and McCann [25] observed a tendency 

for AD subjects to utter a sentence that sounds like a question 

when a statement was appropriate. Le Normand et al. [26] 

found that children with AD produced more words with flat 

contours than typically developing children. Paul et al. [27] 

documented the abilities to reproduce stress in a nonsense 

syllable imitation task of an ASD group that included members 

with high-functioning autism, Asperger‟s syndrome and PDD-

NOS. Perceptual ratings and instrumental measures revealed 

small but significant differences between ASD and typical 

speakers.  

Most studies have aimed to determine whether AD or SLI 

children‟s prosodic skills differed from those of typically 

developing children. They rarely sought to determine whether 

the prosodic skills differed between diagnostic categories. We 
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must note that whereas AD diagnostic criteria are quite clear, 

PDD-NOS is mostly diagnosed by default [28]; its criteria are 

relatively vague, and it is statistically the largest diagnosed 

category [29].  

Language researchers and clinicians share the challenging 

objective of evaluating LIC prosodic skills by using 

appropriate tests. They aim to determine the LIC prosodic 

characteristics to improve diagnosis and enhance children‟s 

social interaction abilities by adapting remediation protocols to 

the type of disorder. In this study, we used automated methods 

to assess one aspect of the grammatical prosodic functions: 

sentence modalities (cf. subsection I.A.). 

C. Prosody Assessment Procedures 

Existing prosody assessment procedures such as the 

American ones [3], [30], the British PROP [31], the Swedish 

one [20] and the PEPS-C [32] require expert judgments to 

evaluate the child‟s prosodic skills. For example, prosody can 

be evaluated by recording a speech sample and agreeing on the 

transcribed communicative functions and prosody forms. This 

method, based on various protocols, requires an expert 

transcription. As the speech is unconstrained during the 

recording of the child, the sample necessarily involves various 

forms of prosody between the speakers, which complicates the 

acoustic data analysis. Thus, most of the prosodic 

communication levels (i.e., grammatical, pragmatic and 

affective, cf. subsection I.A.) are assessed using the PEPS-C 

with a constrained speech framework. The program delivers 

pictures on a laptop screen both as stimuli for expressive 

utterances (output) and as response choices to acoustic stimuli 

played by the computer (input). For the input assessment, there 

are only two possible responses for each proposed item to 

avoid undue demand on auditory memory. As mentioned by 

the authors, this feature creates a bias that is hopefully reduced 

by the relatively large number of items available for each task. 

For the output assessment, the examiner has to judge whether 

the sentences produced by the children can be matched with 

the prosodic stimuli of each task. Scoring options given to the 

tester are categorized into two or three possibilities to score 

the imitation such as “good/fair/poor” or “right/wrong”. As the 

number of available items for judging the production of 

prosody is particularly low, this procedure does not require a 

high level of expertise. However, we might wonder whether 

the richness of prosody can be evaluated (or categorized) in 

such a discrete way. Alternatively, using many more 

evaluation items could make it difficult for the tester to choose 

the most relevant ones.  

Some recent studies have proposed automatic systems to 

assess prosody production [33], speech disorders [34] or even 

early literacy [35] in children. Multiple challenges will be 

faced by such systems in characterizing the prosodic 

variability of LIC. Whereas acoustic characteristics extracted 

by many Automatic Speech Recognition (ASR) systems are 

segmental (i.e., computed over a time-fixed sliding window 

that is typically 32 ms with an overlap ratio of ½), prosodic 

features are extracted in a supra-segmental framework (i.e., 

computed over various time scales). Speech prosody concerns 

many perceptual features (e.g., pitch, loudness, voice quality 

and rhythm) that are all included in the speech waveform. 

Moreover, these acoustic correlates of prosody present high 

variability due to a set of contextual (e.g., disturbances due to 

the recording environment) and speaker‟s idiosyncratic 

variables (e.g., affect [36] and speaking style [37]). Acoustic, 

lexical and linguistic characteristics of solicited and 

spontaneous children‟s speech were also correlated with age 

and gender [38].   

As characterizing speech prosody is difficult, six design 

principles were defined in [33]: (i) highly constraining 

methods to reduce unwanted prosodic variability due to 

assessment procedure contextual factors; (ii) a "prosodic 

minimal pairs" design for one task to study prosodic contrast; 

(iii) robust acoustic features to ideally detect automatically the 

speaker‟s turns, pitch errors and mispronunciations; (iv) fusion 

of relevant features to find the importance of each on the other 

in these disorders; (v) both global and dynamical features to 

catch specific contrasts of prosody; and (vi) parameter-free 

techniques in which the algorithms either are based on 

established facts about prosody (e.g., the phrase-final 

lengthening phenomenon) or are developed in exploratory 

analyses of a separate data set whose characteristics are quite 

different from the main data in terms of speakers.  

The system proposed by van Santen et al. [33] assesses 

prosody on grammatical (lexical stress and phrase boundary), 

pragmatic (focus and style) and affective functions. Scores are 

evaluated by both humans and a machine through spectral, 

fundamental frequency and temporal information. In almost all 

tasks, it was found that the automated scores correlated with 

the mean human judgments approximately as well as the 

judges‟ individual scores. Similar results were found with the 

system termed PEAKS [34] wherein speech recognition tools 

based on hidden Markov Models (HMM) were used to assess 

speech and voice disorders in subjects with conditions such as 

a removed larynx and cleft lip or palate. Therefore, automatic 

assessments of both speech and prosodic disorders are able to 

perform as well as human judges specifically when the system 

tends to include the requirements mentioned by [33]. 

D. Aims of this study 

Our main objective was to propose an automatic procedure 

to assess LIC prosodic skills. This procedure must differentiate 

LIC patients from TD children using prosodic impairment, 

which is a known clinical characteristic of LIC (cf. subsection 

I.B.). It should also overcome the difficulties created by 

categorizing the evaluations and by human judging bias (cf. 

subsection I.C.). The motives of these needs were twofold: (i) 

the acoustic correlates of prosody are perceptually much too 

complex to be fully categorized into items by humans; and (ii) 

these features cannot be reliably judged by humans who have 

subjective opinions [39] in as much as inter-judge variability is 

also problematic. Indeed, biases and inconsistencies in 

perceptual judgment were documented [40], and the relevant 

features for characterizing prosody in speech were defined 
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[41], [42]. However, despite progress in extracting a wide set 

of prosodic features, there is no clear consensus today about 

the most efficient features. 

In the present study, we focused on the French language and 

on one aspect of the prosodic grammatical functions: sentence 

modalities (cf. subsection I.A.). As the correspondences 

between “prosody” and “sentence-type” are language specific, 

the intonation itself was classified in the present work. We 

aimed to compare the performances among different children‟s 

groups (e.g., TD, AD, PDD-NOS and SLI) in a proposed 

intonation imitation task by using automated approaches.  

Imitation tasks are commonly achieved by LIC patients even 

with autism [43]. In a patient, this ability can be used to test 

the prosodic field without any limitations due to their language 

disability. Imitation tasks introduce bias in the data because 

the produced speech is not natural and spontaneous. 

Consequently, the intonation contours that were reproduced by 

subjects may not correspond with the original ones. However, 

all subjects were confronted with the same task of a single 

protocol of data recording (cf. subsection V.B.). Moreover, the 

prosodic patterns that served to characterize the intonation 

contours were collected from TD children (cf. subsection 

III.D.). In other words, the bias introduced by TD children in 

the proposed task was included in the system‟s configuration. 

In this paper, any significant deviation from this bias will be 

considered to be related to grammatical prosodic skill 

impairments, i.e., intonation contours imitation deficiencies. 

The methodological novelty brought by this study lies in the 

combination of static and dynamic approaches to automatically 

characterize the intonation contours. The static approach 

corresponds to a typical state-of-the-art system: statistical 

measures were computed on pitch and energy features, and a 

decision was made on a sentence. The dynamic approach was 

based on Hidden Markov Models wherein a given intonation 

contour is described by a set of prosodic states [44].  

The following section presents previous works that 

accomplished intonation contours recognition. Systems that 

were used in this study are described in section III. The 

recruitment and the clinical evaluation of the subjects are 

presented in section IV. The material used for the experiments 

is given in section V. Results are provided in section VI while 

section VII is devoted to a discussion, and section VIII 

contains our conclusions. 

II. RELATED WORKS IN INTONATION RECOGNITION 

The automatic characterization of prosody was intensively 

studied during the last decade for several purposes such as 

emotion, speaker and speech recognition [45]-[47] and infant-

directed speech, question, dysfluency and certainty detection 

[48]-[51]. The performance achieved by these systems is 

clearly degraded when they deal with spontaneous speech or 

certain specific voice cases (e.g., due to the age of a child [52] 

or a pathology [53]). The approaches used for automatically 

processing prosody must deal with three key questions: (i) the 

time scale to define the extraction locus of features (e.g., 

speaker turn and specific acoustic or phonetic containers such 

as voiced segments or vowels) [54]; (ii) the set of prosodic 

descriptors used for characterizing prosody (e.g., Low-Level 

Descriptors or language models); and (iii) the choice of a 

recognition scheme for automatic decisions on the a priori 

classes of the prosodic features. Fusion techniques were 

proposed to face this apparent complexity [55], [56]. A fusion 

can be achieved on the three key points mentioned above, e.g., 

unit-based (vowel/consonant) fusion [57], features-based 

(acoustic/prosodic) fusion [58] and classifier-based fusion 

[59]. 

Methods that are used to characterize the intonation should 

be based on pitch features because the categories they must 

identify are defined by the pitch contour. However, systems 

found in the literature have shown that the inclusion of other 

types of information such as energy and duration is necessary 

to achieve good performance [60], [61]. Furthermore, 

detection of motherese, i.e., the specific language 

characterized by high pitch values and variability that is used 

by a mother when speaking to her child, requires others types 

of features than those derived from pitch to reach satisfactory 

recognition scores [59]. 

Narayanan et al. proposed a system that used features 

derived from the Rise-Fall-Connection (RFC) model of pitch 

with an n-gram prosodic language model for 4-way pitch 

accent labeling [60]. RFC analysis considers a prosodic event 

as being comprised of two parts: a rise component followed by 

a fall component. Each component is described by two 

parameters: amplitude and duration. In addition, the peak 

value of pitch for the event and its position within the 

utterance is recorded in the RFC model. A recognition score of 

56.4% was achieved by this system on the Boston University 

Radio News Corpus (BURNC), which includes 3 hours of read 

speech (radio quality) produced by six adults.  

 Rosenberg et al. compared the discriminative usefulness of 

units such as vowels, syllables and word levels in the analysis 

of acoustic indicators of pitch accent [61]. Features were 

derived from pitch, energy and duration through a set of 

statistical measures (e.g., max, min, mean and standard 

deviation) and normalized to speakers by a z-score. By using 

logistic regression models, word level was found to provide 

the best score on the BURNC corpus with a recognition rate of 

82.9 %.  

In a system proposed by Szaszák et al. [44], an HMM-based 

classifier was developed with the aim of evaluating intonation 

production in a speech training application for hearing 

impaired children. This system was used to classify five 

intonation classes and was compared to subjective test results. 

The automatic classifier provided a recognition rate of 51.9 % 

whereas humans achieved 69.4 %. A part of this work was 

reused in this study as a so-called „dynamic pitch contour 

classifier‟ (cf. subsection III.B.).  

III. INTONATION CONTOURS RECOGNITION 

The processing stream proposed in this study includes steps 
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of prosodic information extraction and classification (Fig. 1). 

However, even if the data collection phase is realized up-

stream (cf. subsection V.B.), the methods used for 

characterizing the intonation correspond to a recognition 

system. As the intonation contours analyzed in this study were 

provided by the imitation of prerecorded sentences, the 

speaker turn unit was used as a data input for the recognition 

system. This unit refers to the moment where a child imitates 

one sentence. Therefore, this study does not deal with read or 

spontaneous speech but rather with constrained speech where 

spontaneity may be found according to the child. 

During the features extraction step, both pitch and energy 

features, i.e., Low-Level Descriptors (LLD), were extracted 

from the speech by using the Snack toolkit [62]. The 

fundamental frequency was calculated by the ESPS method 

with a frame rate of 10 ms. Pre-processing steps included an 

anti-octave jump filter to reduce pitch estimation errors. 

Furthermore, pitch was linearly extrapolated on unvoiced 

segments (no longer than 250 ms, empirically) and smoothed 

by an 11-point averaging filter. Energy was also smoothed 

with the same filter. Pitch and energy features were then 

normalized to reduce inter-speaker and recording-condition 

variability. Fundamental frequency values were divided by the 

average value of all voiced frames, and energy was normalized 

to 0 dB. Finally, both first-order and second-order derivates (Δ 

and ΔΔ) were computed from the pitch and energy features so 

that a given intonation contour was described by six prosodic 

LLDs, as a basis for the following characterization steps. 

Intonation contours were then separately characterized by 

both static and dynamic approaches (cf. Fig. 1). Before the 

classification step, the static approach requires the extraction 

of LLD statistical measures whereas the dynamic approach is 

optimized to directly process the prosodic LLDs. As these two 

approaches were processing prosody in distinctive ways, we 

assumed that they were providing complementary descriptions 

of the intonation contours. Output probabilities returned by 

each system were thus fused to get a final label of the 

recognized intonation. A 10 fold cross-validation scheme was 

used for the experiments to reduce the influence of data 

splitting in both the learning and testing phases [63]. The folds 

were stratified, i.e., intonation contours were equally 

distributed in the learning data sets to insure that 

misrepresented intonation contours were not disadvantaged 

during the experiments.                                                                                         

A. Static Classification of the Intonation Contour  

This approach is a typical system for classifying prosodic 

information by making an intonation decision on a sentence 

using LLD statistical measures concatenated into a super-

vector. Prosodic features, e.g., pitch, energy and their derivates 

(Δ and ΔΔ), were characterized by a set of 27 statistical 

measures (Table 1) such that 162 features in total composed 

the super-vector that was used to describe the intonation in the 

static approach. The set of statistical measures included not 

only traditional ones such as maximum, minimum, the four 

first statistical moments and quartiles but also perturbation-

 

Fig. 1.  Scheme of the intonation recognition system 

 

 

TABLE I 

SET OF STATISTICAL MEASURES USED FOR STATIC MODELING OF PROSODY 

Measure Description 

Max Value of the maximum 

RPmax Relative position of the maximum 

Min Value of the minimum 

RPmin Relative position of the minimum 

RP_AD Absolute difference between RPmax and RPmin 

Range_n Range divided by RP_AD 

Mean Mean value 

STD Standard deviation value 

Skewness Third statistical moment 

Kurtosis Fourth statistical moment 

Q1 Value of the first quartile 

Median Median value 

Q3 Value of the third quartile 

IQR Inter Quartile Range 

IQR_STD_AD Absolute difference between IQR and STD 

Jitter / Shimmer Coefficient of pitch / energy perturbation 

Slope First coefficient of the regression slope 

OnV Onset value (start value) 

TaV Target value (middle value) 

OfV Offset value (end value) 

TaVOnV_AD Absolute difference between TaV and OnV 

OfVOnV_AD Absolute difference between OfV and OnV 

OfVTaV_AD Absolute difference between OfV and TaV 

%↑ Proportion of rising values 

%↓ Proportion of descending values 

µ↑ Mean of rising values 

µ↓ Mean of descending values 
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related coefficients (e.g., jitter and shimmer), RFC derived 

features (e.g., the relative positions of the minimum and 

maximum values) and features issued from question detection 

systems (e.g., the proportion/mean of rising/descending 

values) [49].  

The ability of these features to discriminate and characterize 

the intonation contours was evaluated by the RELIEF-F 

algorithm [64] in a 10 fold cross-validation framework. 

RELIEF-F was based on the computation of both a priori and 

a posteriori entropy of the features according to the intonation 

contours. This algorithm was used to initialize a Sequential 

Forward Selection (SFS) approach for the classification step. 

Ranked features were sequentially inserted in the prosodic 

features super-vector, and we only kept those that created an 

improvement in the classification task. This procedure has 

permitted us to identify the relevant prosodic features for 

intonation contour characterization. However, the 

classification task was done 162 times, i.e., the number of 

extracted features in total. A k-nearest-neighbors algorithm 

was used to classify the features (k was set to three); the k-nn 

classifier estimates the maximum likelihood on a posteriori 

probabilities of recognizing an intonation contour In (n=1, 2, 

… N intonation classes) on a tested sentence S by searching 

the kn labels (issued from a learning phase) that contain the 

closest set of prosodic features to those issued from the tested 

sentence S. The recognized intonation IS
*
 was obtained by an 

argmax function on the estimates of the a posteriori 

probabilities pstat(In|S) (1) [63]: 

 

 

  SIpargmaxI

k

k
SIp

nstat
Nn

S

n
nstat

:1

*






 (1) 

 

B. Dynamic Classification of the Intonation Contour  

The dynamic pitch contour classifier used Hidden Markov 

Models (HMM) to characterize the intonation contours by 

using prosodic LLDs provided by the feature extraction steps. 

This system was analogous to an ASR system; however, the 

features were based on pitch and energy, and the prosodic 

contours were thus modeled instead of phoneme spectra or 

cepstra. The dynamic description of intonation requires a 

determination of both the location and the duration of the 

intonation units that represent different states in the prosodic 

contours (Fig. 2). Statistical distributions of the LLDs were 

estimated by Gaussian Mixture Models (GMM) as mixtures of 

up to 8 Gaussian components. Observation vectors (prosodic 

states in Fig. 2) were six-dimensional, i.e., equal to the number 

of LLDs. Because some sentences were conveying intonation 

with much shorter duration than others, both a fixed and a 

varying number of states was used according to sentence 

duration to set the HMMs for the experiments. A fixed number 

of 11-state models patterned by 8 Gaussian mixtures were 

found to yield the best recognition performance in empirical 

optimization for Hungarian. In this case, the same 

configuration was applied to French because the intonations 

we wished to characterize were identical to those studied in 

[44]. Additionally, a silence model was used to set the HMM‟s 

configuration states for the beginning and the ending of a 

sentence. The recognized intonation ID
*
 was obtained by an 

argmax function on the a posteriori probabilities pdyn(In|S) (2):  

 

 
   

 

  SIpargmaxI

Sp

IpISp
SIp

ndyn
Nn

D

nn

ndyn

:1

*






 (2) 

 

 

 

Fig. 2.  Principle of HMM prosodic modeling of pitch values extracted from a sentence 
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The estimation of pdyn(In|S) was decomposed in the same 

manner as in speech recognition; according to Bayes‟ rule, 

p(S|In) specifies the prosodic probability of observations 

extracted from a tested sentence S where p(In) is the 

probability associated with the intonation contours and p(S) is 

the probability associated with the sentences. 

C. Fusion of the Classifiers 

Because the static and dynamic classifiers provide different 

information by using distinct processes to characterize the 

intonation, a combination of the two should improve 

recognition performance. Although many sophisticated 

decision techniques do exist to fuse them [55], [56], we used a 

weighted sum of the a posteriori probabilities:  

 

      SIpSIpargmaxI ndynnstat
Nn

*1*
:1

*  


 (3) 

 

This approach is suitable because it provides the 

contribution of each classifier used in the fusion. In (3), the 

label I
*
 of the final recognized intonation contour is attributed 

to a sentence S by weighting the a posteriori probabilities 

provided by both static and dynamic based classifiers by a 

factor α (0 ≤ α ≤ 1). To assess the similarity between these two 

classifiers, we calculated the Q statistic [50]: 

 

10011100

10011100

,
NNNN

NNNN
Q dynstat




  (4) 

 

where N
00

 is the number of times both classifiers are wrong, 

N
11

 is the number of times both classifiers are correct, N
01

 is 

the number of times when the first classifier is correct and the 

second is wrong and N
10

 is the number of times when the first 

classifier is wrong and the second classifier is correct. The Q 

statistic takes values between [-1 ; 1] and the closer the value 

is to 0, the more dissimilar the classifiers are. For example, 

Qstat,dyn = 0 represents total dissimilarity between the two 

classifiers. The Q statistic was used to evaluate how 

complementarity the audio and visual information is for 

dysfluency detection in a child‟s spontaneous speech [50].  

D. Recognition Strategies 

Recognition systems were first used on the control group 

data to define the target scores for the intonation contours. To 

achieve this goal, TD children‟s sentences were stratified 

according to the intonation in a 10 fold cross-validated fashion 

and the a posteriori probabilities provided by both static and 

dynamic intonation classifiers were fused according to (3). 

LIC prosodic abilities were then analyzed by testing the 

intonation contours whereas those produced by the control 

group were learned by the recognition system (Fig. 3).  

The TD children‟s recognition scheme was thus cross-

validated with those of LIC: testing folds of each LIC group 

were all processed with the 10 learning folds that were used to 

classify the TD children‟s intonation contours. Each testing 

fold provided by data from the LIC was thus processed 10 

times. For comparison, the relevant features set that was 

obtained for TD children by the static classifier was used to 

classify the LIC intonation contours. However, the optimal 

weights for fusion of both static and dynamic classifiers were 

estimated for each group separately, i.e., TD, AD, PDD-NOS 

and SLI. 

IV. RECRUITMENT AND CLINICAL EVALUATIONS OF SUBJECTS 

A. Subjects 

Thirty-five monolingual French-speaking subjects aged 6 to 18 

years old were recruited in two university departments of child 

and adolescent psychiatry located in Paris, France (Université 

Pierre et Marie Curie/Pitié-Salpêtière Hospital and Université 

René Descartes/Necker Hospital). They consulted for patients 

with PDD and SLI, which were diagnosed as AD, PDD-NOS 

or SLI according to the DSM-IV criteria [8]. Socio-

demographic and clinical characteristics of the subjects are 

summarized in Table 2. 

To investigate whether prosodic skills differed from those of 

TD children, a monolingual control group (n = 73) matched 

for chronological age (mean age = 9.8 years; standard 

deviation = 3.3 years) with a ratio of 2 TD to 1 LIC child was 

recruited in elementary, secondary and high schools. None of 

the TD subjects had a history of speech, language, hearing or 

general learning problems.  

TABLE II 

SOCIODEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF SUBJECTS 

Characteristic AD PDD-NOS SLI 

Age in years 

Male – Female 

9.8 3.5 

10 – 2 

9.8 2.2 

9 – 1 

9.2 3.9 

10 – 3 

ADI-R scores    

   Social impairment 21.1 5.8 12.7 7.8 Not-relevant 

   Communication 19.3 5.2 8.5 6.4 Not-relevant 

   Repetitive interest 6.4 2.4 2.0 1.6 Not-relevant 

   Total  50.7 12.8 25.7 15.4 Not-relevant 

CARS scores 33.2 15.4 22.3 5.4 Not-relevant 

Statistics are given in the following style: [Mean] (standard-deviation); AD: autism 

disorder; PDD-NOS: pervasive developmental disorder-not otherwise 

specified; SLI: specific language impairment; SD: standard deviation; ADI-

R: autism diagnostic interview-revised [66]; CARS: child autism rating scale 

[67].  

 

Fig. 3.  Strategies for intonation contours recognition 
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AD and PDD-NOS groups were assigned from patients‟ 

scores on the Autism Diagnostic Interview-Revised [66] and 

the Child Autism Rating Scale [67]. The psychiatric 

assessments and parental interviews were conducted by four 

child-psychiatrists specialized in autism. Of note, all PDD-

NOS also fulfilled diagnostic criteria for Multiple Complex 

Developmental Disorder [68], [69], a research diagnosis used 

to limit PDD-NOS heterogeneity and improve its stability 

overtime [70]. SLI subjects were administered a formal 

diagnosis of SLI by speech pathologists and child psychiatrists 

specialized in language impairments. They all fulfilled criteria 

for Mixed Phonologic-Syntactic Disorder according to Rapin 

and Allen's classification of Developmental Dysphasia [9]. 

This syndrome includes poor articulation skills, ungrammatical 

utterances and comprehension skills better than language 

production although inadequate overall for their age. All LIC 

subjects received a psychometric assessment for which they 

obtained Performance Intellectual Quotient scores above 70, 

which meant that none of the subjects showed mental 

retardation. 

B. Basic Language Skills of Pathologic Subjects 

To compare basic language skills between pathological 

groups, all subjects were administered an oral language 

assessment using 3 tasks from the ELO Battery [71]: (i) 

Receptive Vocabulary; (ii) Expressive Vocabulary; and (iii) 

Word Repetition. ELO is dedicated to children 3-11 years old. 

Although many subjects of our study were older than 11, their 

oral language difficulties did not allow the use of other tests 

because of an important floor-effect. Consequently, we 

adjusted the scoring system and determined the severity levels. 

We determined for each subject the corresponding age for 

each score and calculated the discrepancy between “verbal 

age” and “chronological age”. The difference was converted 

into severity levels using a 5-level Likert-scale with 0 standing 

for the expected level at that chronological age, 1 standing for 

a 1-year deviation from the expected level at that 

chronological age, 2 for 2-years deviation, 3 for 3-years 

deviation, and 4 standing for 4 or more years of deviation.   

 

Receptive Vocabulary 

This task containing 20 items requires word comprehension. 

The examiner gives the patient a picture booklet and tells him 

or her: “Show me the picture in which there is a ...”. The 

subject has to select from among 4 pictures the one 

corresponding to the uttered word. Each correct identification 

gives one point, and the maximum score is 20.     

 

Expressive Vocabulary 

This task containing 50 items calls for the naming of 

pictures. The examiner gives the patient a booklet comprised 

of object pictures and asks him or her “What is this?” 

followed by “What is he/she doing?” for the final 10 pictures, 

which show actions. Each correct answer gives one point and 

the maximum score for objects is 20 for children from 3 to 6, 

32 for children from 6 to 8 and 50 for children over 9.  

Word Repetition 

This task is comprised of 2 series of 16 words and requires 

verbal encoding and decoding. The first series contains 

disyllabic words with few consonant groups. The second 

contains longer words with many consonant groups, which 

allows the observation of any phonological disorders. The 

examiner says “Now, you are going to repeat exactly what I 

say. Listen carefully, I won’t repeat”. Then, the patient repeats 

the 32 words, and the maximum score is 32. 

 

As expected given clinical performance skills in oral 

communication, no significant differences were found in 

vocabulary tasks depending on the groups‟ mean severity 

levels (Table 3): p=0.5 for the receptive task and p=0.4 for the 

expressive task. All 3 groups showed an equivalent delay of 1 

to 2 years relative to their chronological ages. The 3 groups 

were similarly impaired in the word repetition task, which 

requires phonological skills. The average delay was 3 years 

relative to their chronological ages (p=0.8).  

V. DATABASE DESIGN 

A. Speech Materials 

Our main goal was to compare the children‟s abilities to 

reproduce different types of intonation contours. In order to 

facilitate reproducibility and to avoid undue cognitive demand, 

the sentences were phonetically easy and relatively short. 

According to French prosody, 26 sentences representing 

different modalities (Table 4) and four types of intonations 

(Fig. 4) were defined for the imitation task. Sentences were 

recorded by means of the Wavesurfer speech analysis tool 

[72]. This tool was also used to validate that the intonation 

contour of the sentences matched the patterns of each 

intonation category (Fig. 4.) The reader will have to be careful 

with the English translations of the sentences given in Table 4 

as they may provide different intonation contours due to 

French prosodic dependencies.  

B. Recording the sentences 

Children were recorded in their usual environment, i.e., the 

clinic for LIC and elementary school/high school for the 

control group. A middle quality microphone (Logitech USB 

Desktop) plugged to a laptop running Audacity software was 

used for the recordings. In order to limit the perception of the 

intonation groups among the subjects, sentences were 

randomly played with an order that was fixed prior to the 

recordings. During the imitation task, subjects were asked to 

TABLE III 

BASIC LANGUAGE SKILLS OF PATHOLOGIC SUBJECTS 

Task from ELO [71] AD PDD-NOS SLI 

Receptive Vocabulary 2.4 1.6 1.9 1.5 1.9 1.0 

Expressive Vocabulary 2.0 1.8 1.2 1.8 1.4 1.1 

Word Repetition 2.9 1.5 2.7 1.4 3.5 0.7 

Statistics are given in the following style: [Mean] (standard-deviation); AD: autism 

disorder; PDD-NOS: pervasive developmental disorder-not otherwise 

specified; SLI: specific language impairment. 



IEEE T-ASL-02805-2010 9 

repeat exactly the sentences they had heard even if they did not 

catch one or several words. If the prosodic contours of the 

sentences were too exaggeratedly reproduced or the children 

showed difficulties, then the sentences were replayed a couple 

of times. 

 To ensure that clean speech was analyzed in this study, the 

recorded data were carefully controlled. Indeed, the 

reproduced sentences must as much as possible not include 

false-starts, repetitions, noises from the environment or speech 

not related to the task. All of these perturbations were found in 

the recordings. As they might influence the decision taken on 

the sentences when characterizing their intonation, sentences 

reproduced by the children were thus manually segmented and 

post-processed. Noisy sentences were only kept when they 

presented false-starts or repetitions that could be suppressed 

without changing the intonation contour of the sentence. All 

others noisy sentences were rejected so that from a total of 

2813 recorded sentences, 2772 sentences equivalent to 1 hour 

of speech in total were kept for analysis (Table 5).  

VI. RESULTS 

Experiments conducted to study the children‟s prosodic 

abilities in the proposed intonation imitation task were divided 

into two main steps. The first step was composed of a duration 

analysis of the reproduced sentences by means of statistical 

measures such as mean and standard deviation values. In the 

second step, we used the classification approaches described in 

section III to automatically characterize the intonation. The 

TABLE V 

QUANTITY OF ANALYZED SENTENCES 

Intonation REF TD AD 
PDD-

NOS 
SLI 

Descending 8 580 95 71 103 

Falling 8 578 94 76 104 

Floating 4 291 48 40 52 

Rising 6 432 70 60 78 

All 26 1881 307 247 337 

REF: speech material; TD: typically developing; AD: autism disorder; PDD: 

pervasive developmental disorders not-otherwise specified; SLI: specific 

language impairment. 

 

Fig. 4.  Groups of intonation according to the prosodic contour: (a) “Descending pitch”, (b) “Falling pitch”, (c) “Floating pitch” and (d) “Rising pitch”. (a): 

“That‟s Rémy whom will be content.”, (b): “As I‟m happy!”, (c): “Anna will come with you.”, (d): “Really?”. Estimated pitch values are shown as solid lines 

while the prosodic prototypes are shown as dashed lines. 

   

 

TABLE IV 

SPEECH MATERIAL FOR THE INTONATION IMITATION TASK 

Intonation Modality Sentence 

Descending Declarative, 

affirmative 

“David a mangé un croissant.” 
“David ate a croissant.” 

“Je viens d‟arriver de l‟école.” 

  “I’m coming from the school.” 

 Declarative, 

negative 

“Cette maison ne me plaît pas du tout.” 
“This house does not appeal to me at all.” 

statements  “Il n‟est pas encore l‟heure.” 
“It’s not yet time.” 

 Declarative, 

dubitative 

“Je ne suis pas sûr de pouvoir le faire.” 
“I’m not about to do so.” 

  “Il me semble qu‟il ne soit pas encore prêt.” 
“It seems to me he is not yet ready” 

 Exclamatory, 

emphatic 

“C‟est Rémy qui va être content.” 
“That’s Rémy whom will be happy.” 

  “C‟est ainsi que vont les choses.” 
“So things are going.” 

Falling Interrogative “Où se tient-il ?” 
“Where is he standing?” 

  “Comment vas-tu ?” 
“How are you?” 

questions Interrogative, 

reduced order 

“Pouvez-vous passer à mon bureau ?” 
“Can you go to my office?” 

/  “Pourriez-vous nous accorder un instant ?” 
“Can you give us a moment?” 

statements Exclamatory “Oh non, je ne te le donnerais pas.” 
“Oh no, I won’t give it to you.” 

  “Comme je suis content !” 
“Because I’m happy!” 

 Imperative, 

order/ 

“Ne l‟abîme pas !” 
“Do not ruin it!” 

 counseling “Dis-moi la vérité !” 
“Tell me the truth!” 

Floating Declarative “Anna viendra avec toi.” 
“Anna will come with you.” 

  “Je suis très content que tu sois venu.” 
“I am very glad you came.” 

statements Exclamatory “J‟aime les crêpes au chocolat.” 
“I like pancakes with chocolate.” 

  “Il n‟aime pas le sucre en poudre.” 
“He does not like powdered sugar.” 

Rising Interrogative, “Qui ?” / “Who?” 

 short “Un croissant ?” / “A croissant?” 

questions questions “Pardon ?” / “Pardon?” 

  “A l‟intérieur ?” / “On the inside?” 

  “Ah bon ?” / “Really?” 

  “Quoi ?” / “What?” 
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recognition scores of TD children are seen as targets to which 

we can compare the LIC. Any significant deviation from the 

mean TD children‟s score will be thus considered to be 

relevant to grammatical prosodic skill impairments, i.e., 

intonation contours imitation deficiencies. A non-parametric 

method was used to make a statistical comparison between 

children‟s groups, i.e., a p-value was estimated by the Kruskal-

Wallis method. The p-value corresponds to the probability that 

the compared data have issued from the same population; 

p<0.05 is commonly used as an alternative hypothesis where 

there is less than 5 % of chance that the data have issued from 

an identical population. 

A. Typically Developing Children 

Sentence Duration 

Results showed that the patterns of sentence duration were 

conserved for all intonation groups when the sentences were 

reproduced by TD children (p>0.05). Consequently, the TD 

children‟s imitations of the intonation contours have conserved 

the duration patterns of the original sentences (Table 6). 

 

Intonation Recognition 

Recognition scores on TD children‟s intonation contours are 

given in Table 7. For comparison, we calculated the 

performance of a naïve classifier, which always attributes the 

label of the most represented intonation, e.g., “Descending”, to 

a given sentence. The Q statistics (cf. subsection III.C.) were 

computed for each intonation to evaluate the similarity 

between classifiers during the classification task.  

The naïve recognition rate of the four intonations studied in 

this paper was 31 %. The proposed system raises this to 70 %, 

i.e., more than twice the chance score, for 73 TD subjects aged 

6 to 18. This recognition rate is equal to the average value of 

scores that were obtained by other authors on the same type of 

task, i.e., intonation contours recognition, but on adult speech 

data and for only 6 speakers [60], [61]. Indeed, the age effect 

on the performance of speech processing systems has been 

shown to be a serious disturbing factor especially when 

dealing with young children [52]. Surprisingly, the static and 

dynamic classifiers were similar for the “Floating” intonation 

even when the dynamic recognition score was clearly higher 

than the static one (Table 7). However, because this intonation 

contains the smallest set of sentences (cf. Table 4), a small 

dissimilarity between classifiers was sufficient to improve the 

recognition performance. The concept of exploiting the 

complementarity of the classifiers used to characterize the 

intonation contours (cf. subsection II.C.) was validated as 

some contours were better recognized by either the static or 

dynamic approach. Whereas both “Rising” and “Floating” 

intonations were very well recognized by the system, 

“Descending” and “Falling” intonations provided the lowest 

recognition performances. The low recognition score of the 

“Falling” intonation may be explained by the fact that this 

intonation was represented by sentences that contained too 

many ambiguous modalities (e.g., question/order/counseling 

etc.) compared with the others.  

The best recognition scores provided by the fusion of the two 

classifiers were principally conveyed by the static approach 

rather than by the dynamic one (Fig. 5). 

As the “Floating” intonation had a descending trend, it was 

confused with the “Descending” and “Falling” intonations but 

never with “Rising” (Table 8). The “Rising” intonation 

appeared to be very specific because it was very well-

recognized and was only confused with “Falling”. Confusions 

with respect to the “Falling” intonation group were numerous 

as shown by the scores, and were principally conveyed by both 

the “Descending” and “Floating” intonations. 

The set of relevant prosodic features that was provided by 

the SFS method, which was used for the static-based 

intonation classification (cf. subsection III.A.), is mostly 

constituted of both Δ and ΔΔ derivates (Table 9): 26 of the 27 

relevant features were issued from these measures. Features 

TABLE VII 

STATIC, DYNAMIC AND FUSION INTONATION RECOGNITION PERFORMANCES 

FOR TYPICALLY DEVELOPING CHILDREN 

Intonation Static Dynamic Fusion Qstat,dyn 

Descending 61 55 64 0.1688 

Falling 55 48 55 0.3830 

Floating 49 71 72 0.6754 

Rising 93 95 95 0.2716 

All 67 64 70 0.4166 

Performances are given as percentage of recognition from a stratified 10 fold 

cross-validation based approach.  

TABLE VI 

SENTENCE DURATION STATISTICS OF 

TYPICALLY DEVELOPING CHILDREN 

Intonation REF TD 

Descending 1.7 0.3 1.7 0.6 
Falling 1.2 0.3 1.3 1.4 
Floating 1.6 0.2 1.6 0.4 
Rising 0.7 0.2 0.5 0.2 

Statistics for sentence duration (in s,) are given in the following style: 

[Mean] (standard-deviation); REF: reference sentences; TD: typically developing. 

 

Fig. 5.  Fusion recognition scores as function of weight alpha attributed to 

both static (α=1) and dynamic classifier (α=0)  
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extracted from pitch are more numerous than those from 

energy, which may be due to the fact that we exclusively 

focused on the pitch contour when recording the sentences (cf. 

subsection V.A.). About half of the features set include 

measures issued from typical question detection systems, i.e., 

values or differences between values at onset/target/offset and 

relative positions of extrema in the sentence. The others are 

composed of traditional statistical measures of prosody (e.g., 

quartiles, slope and standard deviation values). All 27 relevant 

features provided by the SFS method during static 

classification were statistically significant for characterizing 

the four types of intonation contours (p<0.05). 

B. Language Impaired Children 

Sentence Duration 

All intonations that were reproduced by LIC appeared to be 

strongly different from those of TD children when comparing 

sentence duration (p<0.05): the duration was lengthened by 30 

% for the three first intonations and by more than 60 % for the 

“Rising” contour (Table 10). Moreover, the group composed 

of SLI children produced significantly longer sentences than 

all other groups of children except for the case of “Rising” 

intonation. 

Intonation Recognition 

The contributions from the two classification approaches 

that were used to characterize the intonation contours were 

similar among all pathologic groups but different from that for 

TD children: static, α=0.1; dynamic, 1-α=0.9 (Fig. 6). The 

dynamic approach was thus found to be more efficient than the 

static one for comparing the LIC‟s intonation features with 

those of TD children.  

The Q statistics between the classifiers were higher for LIC 

than TD children so that even after recognizing that dynamic 

processing was most suitable for LIC, both the static and 

dynamic intonation recognition methods had less dissimilarity 

than for TD children (Table 11). 

TABLE X 

SENTENCE DURATION STATISTICS OF THE GROUPS 

Intonation REF TD AD PDD-NOS SLI 

Descending 1.7 0.3 1.7 0.6 2.2 0.9  
*T,S

 

2.2 0.8  
*T,S 

2.4 0.9 
*T,A,P

 

Falling 1.2 0.3 1.3 1.4 1.6 0.6  
*T,S

 

1.7 0.8  
*T,S

 

1.8 0.8 
*T,A,P

 

Floating 1.6 0.2 1.6 0.4 2.1 0.7  
*T,S

 

2.1 0.5  
*T,S

 

2.4 1.0 
*T,A,P

 

Rising 0.7 0.2 0.5 0.2 0.9 0.3  
*T

 

0.9 0.3  
*T

 

0.8 0.2  
*T

 

Statistics for sentence duration (in s,) are given in the following style: 

[Mean] (standard-deviation); * = p<0.05: alternative hypothesis is true when 

comparing data between child groups, i.e., T, A, P and S; REF: reference 

sentences; TD (T): typically developing; AD (A): autism disorder; PDD (P): 

pervasive developmental disorders not-otherwise specified; SLI (S): specific 

language impairment. 

 

Fig. 6.  Fusion recognition scores as function of weight alpha attributed to 

both static (α=1) and dynamic classifier (α=0) 

 

  

 

TABLE IX 

RELEVANT PROSODIC FEATURES SET IDENTIFIED BY STATIC RECOGNITION 

Pitch Energy 

R – RPmax Δ – IQR 

Δ – Q1 Δ – Shimmer 

Δ – Q3 Δ – Slope 

Δ – Jitter Δ – TaV 

Δ – Slope Δ – TaVOnV_AD 

Δ – OfVTaV_AD ΔΔ – RPmax 

ΔΔ – RPmin ΔΔ – RPmin 

ΔΔ – RP_AD ΔΔ – Q3 

ΔΔ – STD ΔΔ – OnV 

ΔΔ – Q1 ΔΔ – TaV 

ΔΔ – Median ΔΔ – OfVOnV_AD 

ΔΔ – Q3  
ΔΔ – IQR  
ΔΔ – Jitter  
ΔΔ – OnV  
ΔΔ – OfVOnV_AD  

R: raw data (i.e., static descriptor), Δ: 1st order derivate, ΔΔ: 2nd order 

derivate (Δ and ΔΔ are both dynamic descriptor). 

TABLE VIII 

CONFUSION MATRIX OF THE INTONATION RECOGNITION FOR 

 TYPICALLY DEVELOPING CHILDREN 

Intonation Descending Falling Floating Rising 

Descending 377 58 151 2 

Falling 104 320 116 46 

Floating 50 33 212 0 

Rising 2 16 4 416 

Tested intonations are given in rows while recognized ones (I*) are given in 

columns. Diagonal values from top-left to bottom-right thus correspond to 

sentences that were correctly recognized by the system while all others are 

miscategorized. 

TABLE XI 

Q STATISTICS BETWEEN STATIC AND DYNAMIC CLASSIFIERS 

Measure TD AD PDD-NOS SLI 

Qstat,dyn 0.4166 0.6539 0.4521 0.5542 
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LIC recognition scores were close to those of TD children 

and similar between LIC groups for the “Descending” 

intonation while all other intonations were significantly 

different (p<0.05) between TD children and LIC (Table 12). 

However, the system had very high recognition rates for the 

“Rising” intonation for SLI and TD children whereas it 

performed significantly worse for both AD and PDD-NOS 

(p<0.05). Although some differences were found between LIC 

groups for this intonation, the LIC global mean scores only 

showed dissimilarity with TD. 

The misjudgments made by the recognition system for LIC 

were approximately similar to those seen for TD children 

(Tables 13-15). For all LIC, the “Floating” intonation was 

similarly confused with “Descending” and “Falling” and was 

never confused with “Rising”. However, the “Rising” 

intonation was rarely confused when two other intonations 

were tested. This intonation appeared to be very different from 

the other three but not for the TD group in which more errors 

were found when the “Falling” intonation was tested.   

VII. DISCUSSION 

This study investigated the feasibility of using an automatic 

recognition system to compare prosodic abilities of LIC (Table 

2, 3) to those of TD children in an intonation imitation task. A 

set of 26 sentences, including statements and questions (Table 

4) over four intonation types (Fig. 4), was used for the 

intonation imitation task. We manually collected 2772 

sentences from recordings of children. Two different 

approaches were then fused to characterize the intonation 

contours through prosodic LLD: static (statistical measures) 

and dynamic (HMM features). The system performed well for 

TD children excepted in the case of the “Falling” intonation, 

which had a recognition rate of only 55 %. This low score may 

be due to the fact that too many ambiguous speech modalities 

were included in the “Falling” intonation group (e.g., 

question/order/counseling etc.). The static recognition 

approach provided a list of 27 features that almost represented 

dynamic descriptors, i.e., delta and delta-delta. This approach 

was contributed more than the dynamic approach (i.e., HMM) 

to the fusion.  

Concerning LIC (AD, PDD-NOS and SLI), the assessment 

of basic language skills [71] showed that (i) there was no 

significant difference among the groups‟ mean severity levels 

and (ii) all 3 groups presented a similar delay when compared 

to TD children. In the intonation imitation task, the sentence 

duration of all LIC subjects was significantly longer than for 

TD children. The sentence lengthening phenomenon added 

about 30 % for the first three intonations and more than 60 % 

for the “Rising” intonation. Therefore, all LIC subjects 

presented difficulties in imitating intonation contours with 

respect to duration especially for the “Rising” intonation (short 

questions). This result correlates with the hypothesis that rising 

tones may be more difficult to produce than falling tones in 

children [16]. It also correlates with the results of some 

clinical studies for SLI [13], [19]-[21], AD [24]-[26] and 

PDD-NOS [27] children although some contradictory results 

were found for SLI [18]. 

 The best approach to recognize LIC intonation was clearly 

based on a dynamic characterization of prosody, i.e., using 

HMM. On the contrary, the best fusion approach favored static 

characterization of prosody for TD children. Although scores 

of the LIC‟s intonation contours recognition were similar to 

those of TD children for the “Descending” sentences group, 

TABLE XII 

FUSION INTONATION RECOGNITION PERFORMANCES  

Intonation TD AD PDD-NOS SLI 

Descending 64 64 70 63 

Falling 55 35*T 45*T 39*T 

Floating 72 48*T 40*T 31*T 

Rising 95 57*T,S 48*T,S 81*T,A,P 

All 70 56*T 53*T 58*T 

Performances are given as percentage of recognition; * = p<0.05: alternative 

hypothesis is true when comparing data from child groups, i.e., T, A, P and 

S; TD (T): typically developing; AD (A): autism disorder; PDD (P): 

pervasive developmental disorders not-otherwise specified; SLI (S): specific 

language impairment. 

TABLE XIII 

CONFUSION MATRIX OF THE INTONATION RECOGNITION FOR  

AUTISTIC DIAGNOSED CHILDREN 

Intonation Descending Falling Floating Rising 

Descending 61 14 20 0 

Falling 39 33 20 2 

Floating 16 9 23 0 

Rising 5 23 2 40 

Tested intonations are given in rows while recognized ones (I*) are given in 

columns. Diagonal values from top-left to bottom-right thus correspond to 

sentences that were correctly recognized by the system while all others are 

miscategorized. 

 

TABLE XIV 

CONFUSION MATRIX OF THE INTONATION RECOGNITION FOR  

PERVASIVE-DEVELOPMENTAL-DISORDER DIAGNOSED CHILDREN  

Intonation Descending Falling Floating Rising 

Descending 50 5 16 0 

Falling 29 34 13 0 

Floating 18 8 16 0 

Rising 8 19 4 29 

Tested intonations are given in rows while recognized ones (I*) are given in 

columns. Diagonal values from top-left to bottom-right thus correspond to 

sentences that were correctly recognized by the system while all others are 

miscategorized. 

 

TABLE XV 

CONFUSION MATRIX OF THE INTONATION RECOGNITION FOR 

 SPECIFIC LANGUAGE IMPAIRMENT DIAGNOSED CHILDREN 

Intonation Descending Falling Floating Rising 

Descending 65 22 15 1 

Falling 47 41 16 0 

Floating 20 16 16 0 

Rising 3 10 2 63 

Tested intonations are given in rows while recognized ones (I*) are given in 

columns. Diagonal values from top-left to bottom-right thus correspond to 

sentences that were correctly recognized by the system while all others are 

miscategorized. 

 



IEEE T-ASL-02805-2010 13 

i.e., statements in this study, these scores have not yet been 

achieved in the same way. This difference showed that LIC 

reproduced statement sentences similar to TD children, but 

they all tended to use prosodic contour transitions rather than 

statistically specific features to convey the modality.  

All other tested intonations were significantly different 

between TD children and LIC (p<0.05). LIC demonstrated 

more difficulties in the imitation of prosodic contours than TD 

children except for the “Descending” intonation, i.e., 

statements in this study. However, SLI and TD children had 

very high recognition rates for the “Rising” intonation whereas 

both AD and PDD-NOS performed significantly worse. This 

result is coherent with studies that showed PDD children have 

more difficulties at imitating questions than statements [24] as 

well as short and long prosodic items [25], [27]. As pragmatic 

prosody was strongly conveyed by the “Rising” intonation due 

to the short questions, it is not surprising that such intonation 

recognition differences were found between SLI and the 

PDDs. Indeed, both AD and PDD-NOS show pragmatic 

deficits in communication, whereas SLI only expose pure 

language impairments. Moreover, Snow hypothesized [16] that 

rising pitch requires more effort in physiological speech 

production than falling tones and that some assumptions could 

be made regarding the child‟s ability or intention to match the 

adult‟s speech. Because the “Rising” intonation included very 

short sentences (half the duration) compared with others, 

which involves low working memory load, SLI children were 

not disadvantaged compared to PDDs as was found in [13].  

Whereas some significant differences were found in the 

LIC‟s groups with the “Rising” intonation, the global mean 

recognition scores did not show any dissimilarity between 

children. All LIC subjects showed similar difficulties in the 

administered intonation imitation task as compared to TD 

children, whereas differences between SLI and both AD and 

PDD-NOS only appeared on the “Rising” intonation; the latter 

is probably linked to deficits in the pragmatic prosody abilities 

of AD and PDD-NOS. 

The automatic approach used in this study to assess LIC 

prosodic skills in an intonation imitation task confirms the 

clinical descriptions of the subjects‟ communication 

impairments. Consequently, it may be a useful tool to adapt 

prosody remediation protocols to improve both LIC‟s social 

communication and interaction abilities. The proposed 

technology could be thus integrated into a fully automated 

system that would be exploited by speech therapists. Data 

acquisition could be manually acquired by the clinician while 

reference data, i.e., provided by TD children, would have 

already been collected and made available to teach the 

prosodic models required by the classifiers. However, because 

intonation contours and the associated sentences proposed in 

this study are language dependent, they eventually must be 

adapted to intonation studies in other languages than French. 

Future research with examine the affective prosody of LIC 

and TD children. Emotions were elicited during a story-telling 

task with an illustrated book that contains various emotional 

situations. Automatic systems will serve to characterize and 

compare the elicited emotional prosodic particulars of LIC and 

TD children. Investigations will focus on several questions: (i) 

can LIC understand depicted emotions and convey relevant 

prosodic features for emotional story-telling; (ii) do TD 

children and LIC groups achieve similarly in the task; and (iii) 

are there some types of prosodic features that are preferred to 

convey emotional prosody (e.g., rhythm, intonation or voice 

quality)? 

VIII. CONCLUSION 

This study addressed the feasibility of designing a system 

that automatically assesses a child‟s grammatical prosodic 

skills, i.e., intonation contours imitation. This task is 

traditionally administered by speech therapists, but we 

proposed the use of automatic methods to characterize the 

intonation. We have compared the performance of such a 

system on groups of children, i.e., TD and LIC (e.g., AD, 

PDD-NOS, and SLI).  

The records on which this study was conducted include the 

information based on both perception and production of the 

intonation contour. The administered task was very simple 

because it was based on the imitation of sentences conveying 

different types of modality through the intonation contour. 

Consequently, the basic skills of the subjects in the perception 

and the reproduction of prosody were analyzed together. The 

results conveyed by this study have shown that the LIC have 

the ability to imitate the “Descending” intonation contours 

similar to TD. Both groups got close scores given by the 

automatic intonation recognition system. LIC did not yet 

achieve those scores as the TD children. Indeed, a dynamic 

modeling of prosody has led to superior performance on the 

intonation recognition of all LIC‟s groups, while a static 

modeling of prosody has provided a better contribution for TD 

children. Moreover, the sentence duration of all LIC subjects 

was significantly longer than the TD subjects (the sentence 

lengthening phenomenon was about 30% for first three 

intonations and more than 60% for the “Rising” intonation that 

conveys pragmatic). In addition, this intonation has not led to 

degradations in the performances of the SLI subjects unlike to 

PDDs as they are known to have pragmatic deficiencies in 

prosody. 

The literature has shown that a separate analysis of the 

prosodic skills of LIC in the production and the perception of 

the intonation leads to contradictory results. Consequently, we 

used a simple technique to collect data for this study. The data 

collected during the imitation task include both perception and 

production of the intonation contours, and the results obtained 

by the automatic analysis of the data have permitted to obtain 

those descriptions that are associated with the clinical 

diagnosis of the LIC. As the system proposed in this study is 

based on the automatic processing of speech, its interest for 

the diagnosis of LIC through prosody is thus fully justified. 

Moreover, this system could be integrated into software that 

would be exploited by speech therapists to use prosodic 
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remediation protocols adapted to the subjects. It would thus 

serve to improve both the LIC‟s social communication and 

interaction abilities. 
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